

Capitolo 1 Richiami di termodinamica

1.1 Definizioni

- TERMODINAMICA: disciplina che studia essenzialmente le trasformazioni reciproche tra lavoro meccanico e calore.
- SISTEMA (in termodinamica): Regione dello spazio limitata, o quantità di materia finita, divisibile, idealmente o no, da ciò che la circonda, cioè dall'ambiente circostante.
 - a. Sistemi aperti = possono scambiare materia ed energia con l'ambiente circostante;
 - b. Sistemi chiusi = possono scambiare solo energia con l'ambiente circostante;
 - c. Sistemi isolati = non possono scambiare massa ed energia con l'ambiente circostante.

1.2 Analisi dei sistemi termodinamici

- Analisi microscopica: studio del comportamento delle singole molecole del sistema
- Analisi macroscopica: descrizione del sistema termodinamico in termini di variabili che fanno riferimento alle proprietà medie del sistema.

1.3 Coordinate

- Coordinate termodinamiche: grandezze che consentono di descrivere compiutamente in termini macroscopici le condizioni (lo stato) di un sistema, e in particolare la sua energia interna.
- Coordinate meccaniche: grandezze che consentono di descrivere compiutamente in termini macroscopici l'energia esterna (o meccanica) di un sistema, e in particolare l'energia potenziale e l'energia cinetica. Coordinate meccaniche possono essere per esempio la posizione e la velocità.
- Coordinate chimiche: grandezze che consentono di definire la struttura, la composizione chimica e la massa di un sistema.

1.4 Grandezze estensive e intensive

- Grandezze intensive: non dipendono dalle dimensioni di un sistema (pressione p, temperatura T, densità ρ , ...)
- Grandezze estensive: viceversa (volume V, calore Q, energia interna E, entalpia H).
 Per queste grandezze useremo lettere minuscole (v, q, e, h) quando ci si riferirà a valori specifici, cioè quando saranno riferite a una unità di massa, o a una mole.

1.5 Stato, stato di equilibrio

- Stato del sistema: condizione del sistema completamente definita da un numero (minimo) di coordinate.
- Stato di equilibrio: stato in cui il sistema permane indefinitamente in assenza di interventi esterni
- Equazione di stato: equazione che descrive il legame tra le coordinate termodinamiche in condizioni di equilibrio, per esempio

$$f(p, T, V) = 0$$

In condizioni di equilibrio una grandezza può essere espressa in funzione delle altre che entrano nell'equazione di stato.

1.6 Funzioni di stato

Grandezze termodinamiche (energia interna, entalpia, entropia,...) i cui valori dipendono solo dalle coordinate termodinamiche di un certo stato di equilibrio termodinamico, e non dal modo in cui tale stato viene raggiunto.

1.7 Sistemi pVT

Sistemi isotropi di massa e composizione costanti che esercitano sull'ambiente circostante una pressione idrostatica uniforme. La loro equazione di stato stabilisce una relazione tra le tre coordinate $p,\,V,\,T$ relativamente a uno stato di equilibrio.

Esempio 1.1 Nel caso di un gas ideale, l'equazione di stato di un sistema costituito da una mole di gas è

$$pv = \frac{RT}{P_m}$$

o anche

$$\frac{p}{\rho} = \frac{RT}{P_m}$$

dove P_m è il peso molecolare del gas e R è la costante universale dei gas.

1.8 Equilibrio

Equilibrio termodinamico: si ha quando il sistema si trova contemporaneamente nei tre seguenti stati di equilibrio:

- Equilibrio meccanico: non si esercitano forze non bilanciate né all'interno del sistema, né tra il sistema e l'ambiente circostante.
- Equilibrio chimico: non si verificano processi che alterano la struttura interna del sistema, quali per esempio reazioni chimiche.
- Equilibrio termico: le coordinate termodinamiche non cambiano, tutte le parti del sistema hanno la medesima temperatura, che coincide con quella dell'ambiente circostante.

1.9 Trasformazioni termodinamiche

Processi in cui un sistema termodinamico passa da uno stato di equilibrio a un altro.

- Isoterme: avvengono a temperatura costante;
- Isobare: avvengono a pressione costante;
- Isocore: avvengono a volume costante;
- Adiabatiche: avvengono senza scambio di calore tra il sistema e l'ambiente;
- quasi statiche: avvengono passando attraverso un numero molto grande (infinito) di stati di equilibrio.

1.10Lavoro, calore e trasformazioni termodinamiche

- Lavoro: grandezza fisica definita come il prodotto di una forza che agisce su un corpo per lo spostamento che il corpo subisce sotto la sua azione.
- Calore: ente che viene scambiato fra un sistema e l'ambiente circostante esclusivamente in virtù di una differenza di temperatura.
- Trasformazione termodinamica: trasformazione del sistema che cambia lo stato termodinamico. In una trasformazione termodinamica, il lavoro e il calore non dipendono solo

dagli stati iniziale e finale (non sono quindi funzioni di stato), ma anche dal percorso seguito, le quantità infinitesime di lavoro e di calore sono quindi dei differenziali non esatti (δL e δQ), cioè non sono il differenziale di una funzione delle coordinate termodinamiche.

Convenzione: sono positive le grandezze assorbite dal sistema e negative quelle cedute

1.11Primo principio della termodinamica

In un sistema chiuso, ma non isolato, facendo compiere una trasformazione al sistema fornendo calore Q in una certa fase e facendogli compiere lavoro L in un'altra in modo che si torni allo stato iniziale, si verifica che L/Q=-1, cioè L+Q=0. Se si considera ora solo questa trasformazione chiusa, cioè che riporta il sistema nello stato iniziale, come la concatenazione di due trasformazioni aperte, il termine L+Q relativo alla prima deve essere uguale, a meno del segno, a quello relativo alla seconda. Quindi L+Q è una funzione di stato, anche se L e Q singolarmente non lo sono. Questa funzione si chiama energia interna E e risulta

$$\Delta E = L + Q$$

Questa relazione rappresenta il primo principio della termodinamica. È un principio di conservazione dell'energia per sistemi chiusi. Per quanto detto l'energia interna è un differenziale esatto

Più in generale, considerando anche possibili variazioni dell'energia cinetica E_k e potenziale E_p di un sistema, per l'energia totale E_t si potrà scrivere

$$\Delta E_t = \Delta E + \Delta E_k + \Delta E_p = L + Q$$

Le energie specifiche cinetica e potenziale sono date da

$$\begin{array}{rcl} e_k & = & \frac{1}{2}u^2 \\ e_p & = & gz \end{array}$$

dove u è la velocità, z è la altezza rispetto al riferimento e g è l'accelerazione di gravità. La forma differenziale del primo principio è

$$dE = \delta L + \delta Q$$

Esempio 1.2 In un sistema pVT per trasformazioni quasi statiche si ha

$$dE = \delta Q - pdV$$

Capitolo 1 Richiami di termodinamica

Esempio 1.3 In un sistema pVT, nel caso di trasformazioni quasi statiche a volume costante $(\delta L = 0)$

$$dE = \delta Q$$

cioè il calore trasmesso va a modificare l'energia interna del sistema.

1.12Entalpia e calori specifici

Consideriamo ancora sistemi pVT.

• Entalpia: è una coordinata termodinamica definita da

$$H = E + pV$$

o, in termini specifici,

$$h = e + pv = e + \frac{p}{q}$$

 $h=e+pv=e+\frac{p}{\rho}$ Nei sistemi pVT l'entalpia può essere vista come H=f(p,T), o H=f(T,V), cioè come funzione di due coordinate termodinamiche secondo l'equazione di stato.

In forma differenziale

$$dH = dE + d(pV) = \delta L + \delta Q + d(pV)$$

Nel caso di trasformazioni quasi statiche a volume costante ($\delta L = 0$, dV = 0)

$$dH = \delta Q + V dp$$

Nel caso di trasformazioni quasi statiche a pressione costante (dp=0)

$$dH = \delta L + \delta Q + d(pV) = -pdV + \delta Q + pdV = \delta Q$$

Capacità termica: rapporto tra il calore Q fornito a un sistema e la differenza di temperatura $(T_2 - T_1)$ da esso causata

$$C = \frac{Q}{\Delta T} = \frac{Q}{T_2 - T_1}$$

Calore specifico a pressione costante: nei sistemi pVT fa riferimento al rapporto tra variazioni infinitesime quando la trasformazione avviene a pressione costante

$$c_p = \left(\frac{\delta q}{dT}\right)_{p=\cos t} = \left(\frac{dh}{dT}\right)_{p=\cos t}$$

Calore specifico a volume costante: nei sistemi pVT fa riferimento al rapporto tra variazioni infinitesime quando la trasformazione avviene a volume costante

$$c_v = \left(\frac{\delta q}{dT}\right)_{v=\cos t} = \left(\frac{de}{dT}\right)_{v=\cos t}$$

1.12.1 Gas perfetti

Ricordando che per i gas perfetti vale la relazione $\frac{p}{\rho}=\frac{RT}{P_m}$ e che $h=e+\frac{p}{\rho}=e+\frac{RT}{P_m}$, differenziando questa relazione rispetto a T si ha

$$\frac{dh}{dT} = \frac{de}{dT} + \frac{R}{P_m}$$

da cui

$$c_p = c_v + \frac{R}{P_m}$$

1.12.2 Solidi e liquidi

Per i solidi e i liquidi si usa fare riferimento soltanto al calore specifico a pressione costante, dato che una variazione di temperatura comporta (almeno in teoria) una variazione di volume.

1.13Equazione della politropica

Per dedurre l'equazione della politropica per trasformazioni adiabatiche, isoterme, isobare, si suppone che il fluido in esame sia un gas perfetto, per cui $pv=\frac{RT}{P_m}$. Questa ipotesi, per gas reali, è valida in intervalli limitati. A partire dalle relazioni

$$\begin{array}{rcl} de & = & c_v dT \\ dh & = & c_p dT \\ \delta q & = & dh - v dp = de + p dv \end{array}$$

segue che

$$\delta q = c_p dT - v dp$$

$$\delta q = c_v dT + p dv$$

1.13.1 Trasformazioni adiabatiche

Poiché $\delta q = 0$, si ha che

$$c_p dT - v dp = 0$$
$$c_v dT + p dv = 0$$

Ricavando dT dalla seconda e sostituendo nella prima

$$\frac{c_p}{c_v} = -\frac{v}{p}\frac{dp}{dv}$$

o anche, ponendo $\gamma = \frac{c_p}{c_v}~(\simeq 1.2 \div 1.5),$

$$\frac{dp}{p} = -\gamma \frac{dv}{v}$$

che integrata diventa

$$\ln p = -\gamma \ln v + \ln k$$

cioé

$$pv^{\gamma} = k$$
$$p = k\rho^{\gamma}$$

L'equazione

$$p = k\rho^n$$

è la generica equazione della politropica, che nel caso specifico è valida per $n=\gamma$.

1.13.2 Trasformazioni isoterme

Nel caso di trasformazioni isoterme dT = 0 e, dalle relazioni precedenti,

$$\begin{array}{rcl} \delta q & = & -vdp \\ \delta q & = & +pdv \end{array}$$

per cui

$$\frac{dv}{v} = -\frac{dp}{p}$$

Vale quindi ancora la

$$p = k\rho^n$$

 $\mathrm{con}\ n=1$

1.13.3 Trasformazioni isobare

Per trasformazioni isobare, cioè con $p = \cos t$., si può ancora supporre

$$p = k\rho^n$$

con n = 0.

1.14Trasmissione del calore

La trasmissione del calore può avvenire per conduzione, convezione e irraggiamento.

1.14.1 Conduzione

La trasmissione avviene senza trasporto macroscopico di materia. E' governato dall'equazione di Fourier

$$\frac{dQ(t)}{dt} = \Phi(t) = -\lambda A \frac{dT(t)}{dx}$$

dove λ è la conduttività termica e dipende dalle caratteristiche del materiale, A è la superficie di scambio e Φ è il flusso termico.

Per esempio, il flusso tra due superfici parallele poste a distanza l e con temperature T_1 e T_2 è

$$\Phi = \frac{\lambda A}{l} \left(T_1 - T_2 \right)$$

1.14.2 Convezione

È dovuto al movimento di un fluido, che può essere causato dalla non uniformità della temperatura del fluido stesso (convezione naturale), o forzato dall'esterno (convezione forzata). Nel caso di trasmissione di un solido a un fluido, o viceversa, si può pensare che la trasmissione di calore avvenga per convezione o per conduzione, in questo caso supponendo che che si formi uno strato limite di fluido attraverso il quale si ha il flusso termico. In ogni caso si può porre

$$\Phi = -kA\Delta T$$

dove il coefficiente $k \left[kg/s^3K \right]$ dipende dal fluido.

Se il fluido è un liquido

$$k = k_0 \left(\frac{u}{u_0}\right)^{0.8}$$

dove u_0 è una velocità di riferimento.

Se il fluido è un gas si ha invece

$$k = k_0 \left(\frac{u}{u_0}\right)^{0.6}$$

1.14.3 Irraggiamento

È dovuto alla propagazione di onde elettromagnetiche. Il flusso termico emesso da un corpo a temperatura assoluta T e superficie A è

$$\Phi = \sigma_u A T^4$$

dove σ_u è la costante di radiazione del corpo nero.

Il flusso termico tra due superfici parallele di area A e con temperature T_1 e T_2 è

$$\Phi = \sigma_u A \left(T_1^4 - T_2^4 \right)$$

Capitolo 1 Richiami di termodinamica

1.15Definizioni ausiliarie

Peso atomico = massa relativa di un atomo, espressa in unità di massa atomica (u), scelta arbitrariamente. Oggi si adotta 1/12 dell'isotopo del carbonio 12.

Peso molecolare P_m = somma dei pesi atomici di tutti gli atomi di una molecola.

Mole = peso molecolare espresso in grammi.

Grammomolecola = mole.

1.16Coefficiente di attrito C_f

Il coefficiente di attrito dipende dal tipo di flusso, laminare o turbolento, che si instaura. Il suo valore è quindi funzione del numero di Reynolds

$$Re = \frac{\rho u D}{\mu}$$

dove μ è la viscosità dinamica (8.57 * $10^{-4}~Pa~s$ per l'acqua a 27^o), oltre che dalla ruvidezza delle pareti.

Una formula empirica che può essere utilizzata, sia per moto laminare sia per moto turbolento, è

$$C_f = \frac{0.0791}{\text{Re}^{0.25}}$$

A. U. Thor

1.17Lista dei simboli e delle costanti

```
pressione [Pa = kg/ms^2 = N/m^2]
         volume specifico [m^3/kg]
         volume [m^3]
         densità [kg/m^3]
         densità lineare (=\rho A) [Kg/m]
         temperatura [K]
         entalpia specifica [J/kg = m^2/s^2]
 h
         entalpia [J = kgm^2/s^2 = Nm]
H
         energia interna specifica [J/kg = m^2/s^2]
 e =
         energia interna [J = kgm^2/s^2 = Nm]
 E
         energia cinetica specifica [J/kg = m^2/s^2]
e_k
         energia cinetica [J]
E_k
         energia potenziale specifica [J/kg = m^2/s^2]
e_p
E_p
         energia potenziale [J]
 L
         lavoro [J]
    =
         potenza [W = J/s]
 \Psi
         potenza per unità di lunghezza [W/m]
 Q
         calore [J]
         calore specifico a pressione costante [J/KgK]
c_p
         calore specifico a volume costante [J/KgK]
 Φ
         flusso di calore [W = J/s]
        flusso di calore per unità di lunghezza [W/m]
         costante universale dei gas [8314Nm/KgK]
 R =
```